Improves heat resistance and mechanical characteristics of polymer

TAIC® [TRIALLYL ISOCYANURATE]

Adding TAIC® to the crosslinking process of polymer and copolymerization greatly improves crosslinking efficiency, heat resistance and mechanical properties

![Chemical structure of TAIC®](image)

Features
- Improvement of crosslinking efficiency by three functional allyl groups
- With a triazine ring, heat resistance is greatly improved.
- Various polymers can be greatly improved by copolymerization
 1. Heat resistance
 2. Mechanical characteristics
 3. Hydrolytic resistance
 4. Weather resistance

Applications
- Improvement of various rubbers
- Improvement of plastic
- Material for polymer alloy

Properties
- Chemical formula: C₁₂H₁₅N₃O₃
- Appearance: Slightly yellowish liquid or white solid
- Viscosity: 80~110 mPa·s (30°C)
- Melting point: 23~27°C
- Moisture: Max 0.1%

Related products
- **Powder type crosslinker**
 1. **TAIC® M – 60**
 - Made by impregnating diatomaceous earth with 60wt% of TAIC®. As this product is in powder form, it is easy to handle and disperse to rubber, etc.
 2. **TAIC® WH – 60**
 - Made by impregnating white carbon with 60wt% of TAIC®.
 3. **TAIC® Prepolymer**
 - This product is powder-type with low volatility in high-temperature processing fields

- **Flame retardant**
 - **TAIC®-6B**
 - (Tris [2,3 dibromopropyl] isocyanurate)
 - This product has high flame-resistance to PP or PS, and does not cause no bleeding compared to other Br–Flame retardant

Packing
- 20kg oil Can
- 200kg Drum